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A new iterative method for the solution of systems of linear equations has been recently 
proposed by Meijerink and van der Vorst [l]. This method has been applied to real laser 
fusion problems taken from typical runs of the laser fusion simulation code LASNEX [2]. 
These same problems were also solved by various standard iteration methods. On a typical 
hard problem, the new method is about 8000 times faster than the point Gauss-Seidel 
method, 200 times faster than the alternating direction implicit method, and 30 times 
faster than the block successive overrelaxation method with optimum relaxation factor. 
The new method has two additional virtues. (1) Most of the algorithm is trivially vectoriz- 
able with a vector length equal to the full dimension of the system of linear equations. 
Thus, great savings are possible on vector machines. (2) The new method has a universal 
scope of application for solution of implicitly dilferenced partial differential equations. 
The only restrictions are that the matrix be symmetric and positive definite. The algorithm 
of Meijerink and van der Vorst which applied only to positive definite symmetric M-matrices 
is generalized to apply to positive definite symmetric matrices and further generalized to 
apply to nonsingular matrices arising from partial differential equations. A general des- 
cription of the method is given. Numerical results are discussed and presented, and an 
explanation is given for the success of the method. 

INTRODUCTION 

A new iterative method for the solution of systems of linear equations has been 
recently proposed by Meijerink and van der Vorst [l]. This method has been applied 
to real laser fusion problems taken from typical runs of the laser fusion simulation 
code LASNEX [2]. These same problems were also solved by various standard 
iteration methods. On a typical hard problem, the new method is about 8000 times 
faster than the point Gauss-Seidel method, 200 times faster than the alternating 
direction implicit method, and 30 times faster than the block successive overrelaxation 
method with optimum relaxation factor. The new method has two additional virtues. 

(1) Most of the algorithm is trivially vectorizable with a vector length equal 
to the full dimension of the system of linear equations. Thus, great savings are possible 
on vector machines. 
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ministration under contract No. W7405-ENG-48. 
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(2) The new method has a universal scope of application for solution of im- 
plicitly differenced partial differential equations. The only restrictions are that the 
matrix be symmetric and positive definite. The algorithm of Meijerink and van der 
Vorst also required that the matrix be an M-matrix (i.e., Mij < 0 for all i #j). A 
simple generalization of their algorithm discussed in Section 1 eliminates this require- 
ment and still gives a very good approximate factorization in all applications we have 
tried. A large variety of physical problems lead to symmetric differential operators, and 
symmetric differencing of the partial differential equation is usually required for energy 
or particle number conservation. In the case of nonsymmetric differential operators, 
simple modifications of the method are still applicable and seem to work quite 
well (see Appendix A). The stability requirement that errors not grow in time leads 
to positive definite matrices. Methods like alternating direction implicit only apply 
to five-point coupling where the point (k, I) is coupled to (k f 1,1) and (k, I* 1). 
If the physics requires that (k, r) also couple to (k rt 1, 1 & 1) and (k + 1, 1 F 1) 
(as is often the case), the methods become inapplicable; whereas the new method 
works just as well for this case. Methods like block successive overrelaxation only 
apply to cyclic, consistently ordered matrices. The new method has no such restrictions. 
In fact, the new method has been successfully applied to diffusion problems where the 
mesh points can be placed at arbitrary positions on the plane and arbitrarily ordered, 
and different points can have different numbers of neighbors. The corresponding 
matrix has nonzero entries on the diagonal and the other nonzero entries are sprinkled 
more or less randomly over the matrix. 

In Section 1, a general description of the new method is given. In Section 2, the 
numerical results are presented. In Section 3, some explanations are given for the 
striking success of the method. 

1. THE INCOMPLETE CHOLESKY-CONJUGATE GRADIENT METHOD 

The conjugate gradient method was originally proposed in 1952 by Hestenes and 
Stiefel [3]. Excellent discussions of the method have recently appeared by Reid [4] 
and Concus et al. [5]. Given a system 

Mx=y 

of N linear equations where M is symmetric and positive definite, and an initial guess 
x,, for the solution vector x, one could try to approximate x by letting 

X -xx,+2 n- a&f-yMx, - y) 

61 

and choosing the ai to minimize 

II xm - x Il.&f 9 

where (j z [h = (z, Mz)‘j2. 
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Writing Eq. (1) in the form 

&I - x = (x0 - x) + E. aJ4yx, - .u) 
i=l 

it is obvious that the 0~~ that minimize /I x, - x ljM may be found by orthonormalizing 
the set of vectors 

W(x, - x); i = 1, 2,..., m 

in the 11 /lw norm, thus obtaining an orthonormal set 

ui = i c&4j(x, - x); i = 1, 2,..., m 
j=l 

with (ui , MuJ = aij , and then setting 

or 

(X% - x) = (x0 - x) - 2 (Ui , M(x* - x), ui , 
f-l 

X m= x0 - f (4 , (Mxo - Y)) 4 - (2) 
i=l 

If it were necessary to orthogonalize each new vector, Mj (.ro - x), with respect 
to each of the previous (j - 1) vectors, the method would be very expensive. However, 
if instead of Mj (x0 - x) we take as our jth vector M(x(~-~) - x), which is just a 
linear combination of Mj (x,, - x) and the previous (j - I) vectors, then the jth 
vector is already orthogonal to the first (j - 2) vectors, for 

C”YxO - x>t M2CX(j-l) - x)), where i<j-2, 

= (Mi+‘(Xo - X), M(X(j-1) - X)), where i $ 1 <j - 1, 

and (x(~-~) - x) was constructed orthogonal (in the A4 norm) to ME (x0 - x), I = 1, 
2,..., (j - 1). Therefore, one need only orthogonalize the jth vector with respect to 
~(~-r) and as one iterates, one need only store the last two orthonormal vectors ~(~-r) 
and uj . 

This is accomplished recursively by the Hestenes and Stiefel algorithm: Let r, -L 
y - Mx, and p. = r, , then 

ai = G-i , rJl(h , J$Pi), 

x(i+l) = xi + &Pi , 

r(i+l) = ri - ai Mpi , 

4 = hi+l) , r(i+d/(r~ , rJ, 

P(i+l) = r(i+l) + &pi , 
i = 0, 1, 2 ,.... 

(34 

(3b) 

(3c) 

(34 

(34 
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The pi generated by this algorithm are just the (unnormalized) ui of Eq. (2). 
That is 

(Pi 2 MP,) = 0; i#j, 

and the xi of Eq. (3b) are just the xi of Eq. (2). It is clear from Eq. (2) that when 
m = N, one has subtracted off the components of (x - x,,) along a complete ortho- 
normal set of vectors and therefore xN = x. It is also clear from Eq. (2) that if the 
matrix M has only r distinct eigenvalues, then the Mj(x, - x), j = 0, 1, 2,... all lie in 
an r-dimensional subspace, and so x, = x, and the conjugate gradient method gets 
the exact answer after only r iterations. The whole process is completely analogous 
to the approximation of a function by a set of orthonormal polynomials, only the 
vector space is of finite rather than infinite dimension. 

Just as with approximation of functions by orthonormal polynomials where one 
often gets quite good approximation with only a small number of polynomials, with 
the conjugate gradient method one often finds that /j xi -- x II/II x /I is quite small even 
though i < N. This is especially true if the matrix M has many nearly degenerate 
or clustered eigenvalues which will be the case if M does not differ very much from 
the identity matrix. In real physics problems, the matrix M obtained by differencing a 
partial differential equation usually has a very large spread of eigenvalues with no 
approximate degeneracy. In the laser fusion problems studied typically 

with no multiple eigenvalues and eigenvalues evenly distributed between A,,, and Amin. 
Thus, for these problems, the conjugate gradient method in its simplest form (Eqs. (3a) 
through (3e)) does very poorly. 

One way of solving the system of linear equations Mx = y is Gaussian elimination 
and the most efficient form of Gaussian elimination when A4 is symmetric and positive 
definite is the Cholesky decomposition method [6] where one writes 

M = LLT (4) 

where L is lower triangular. Equation (4) uniquely determines L and since L is lower 
triangular, L-lz and (LT)-l z, where z is any vector, are easily calculated and so 

x = (LT)--1 (L-‘y) (5) 

solves the problem. Solving Eq. (4) for L, one finds it is determined column-by- 
column recursively by 

(i-1) 

Lii = Mii - c L& its, 1 (64 
k=l 

j = (i + l), (i + 2) ,..., N. (6b) 
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A simple modification of (4) in which square roots are avoided is as follows. 

M = LDLT, (74 

where off diagonal entries of D are zero and L and D are determined recursively 
column-by-column as follows. 

h-1) 

and 
,j = i, (i + 1) ,..., N, 

Dii = (L&l. 

U’b) 

Unfortunately, for large sparse matrices, the calculation of L is both very time and 
very storage consuming because in calculating L, many of the elments of M which 
were zero become nonzero in L and so the sparseness of the original matrix is lost. 

To avoid this problem, one can do incomplete Cholesky decomposition. One 
defines a sparsity pattern which is to be forced on L. That is, one chooses a set of 
matrix entries P which one is going to force to be zero in L. Then as one proceeds 
through algorithm (7b), whenever an Lij turns up with 

(6 .i) E p, 

one sets it to zero and continues with the algorithm. Thus these elements of L are 
neither calculated nor stored. The simplest choice for P is 

P = {(i,,j) 1 Mij = 0; i, j = I,..., N}, 

that is, L is forced to have the same sparsity pattern as M. In Ref. [l] this choice is 
referred to as ICCG(0). This choice for P shall be used throughout the rest of this 
paper. In this way, an approximate inverse for M is obtained, i.e., 

M=LDL=+E, 

where E is a small error matrix whose nonzero entries all lie in the set P. As we 
proceed through algorithm (7b) it is crucial that all the Lii be greater than zero. 
If Lii = 0 then the algorithm breaks down, and if Lii < 0, then LDLT is not positive 
definite and the conjugate gradient method can no longer be used to get the exact 
solution as in Eqs. (8) and (9). Complete Cholesky decomposition always gives 
Lii > 0 and Meijerink and van der Vorst showed that if M is an M-matrix (Mi, < 0 
if i # j) incomplete Cholesky will always give Lii > 0. Incomplete Cholesky de- 
composition of an arbitrary positive definite symmetric matrix will not always give 
Lii > 0. A simple counterexample is the positive definite symmetric matrix 

581/26/1-4 
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Complete Cholesky (LDLT, Eq. (7b)) gives L,, = g while ICCG(0) gives L,, = -5. 
However, since we are not trying to get an exact decomposition, if an Lii turns up 
such that Lii < 0, we can simply set Lii to some positive value and then go on with 
algorithm (7b). This will cause only the ith diagonal element of error matrix, Eii , 
to become nonzero. All other nonzero entries of E will still lie in the set P. If Lii < 0 
rarely occurs (i.e., if the decomposition is mostly stable) this should work quite well 
[7]. Thus we have a positive definite, symmetric approximate factorization of M even 
when M is not an M-matrix. One must still ask if altering the diagonal elements of L 
in this way worsens the approximate LDL factorization of M. For a wide variety 
of problems we have encountered in our Laser Fusion work, this generalized LDLT 
factorization is still a very good approximation as evidenced by the very rapid con- 
vergence of the conjugate gradient iterations [7]. Thus in approximate Cholesky 
factorization stability does not seem to be as crucial as in complete Cholesky de- 
composition. A few pivots can be unstable and one can still get quite a good approxi- 
mate factorization as long as most of the pivots are stable. The work and storage 
involved in computing this approximate L is much less than that involved in computing 
the exact L. 

For the five-point difference scheme used in my examples, storage for the complete 
Cholesky decomposition is KL2 (where k = 1, 2,..., K and I = 1, 2,..., L) whereas for 
the incomplete Cholesky decomposition storage it is only KL. For complete Cholesky 
the approximate number of multiplications is iKL3 while for incomplete Cholesky it 
is 4KL. 

To get an exact solution, rewrite 
MX==JJ 

as 
[L-lM(LT)-11 (LTX) = (L-l) y, (8) 

(here we use the M = LLT decomposition, Eqs. (6a) and (6b)). If (LLT)-l is an 
approximate inverse for M, then L-‘M(LT)-l will be an approximate identity matrix 
and so by what was said earlier, the conjugate gradient method should converge 
very rapidly when applied to the matrix L-lM(LT)-l. Substituting this matrix into 
Eqs. (3), after a little rearrangement, one obtains the modified algorithm: 

Let r,, = y - Mx,, and p0 = (LLT)-'r, , then 

% = (ri , (LLTPiMPi , MPih 

X(i+l) = Xi + 4Pi 3 

r(i+l) = ri - ai MP~ , 

bi = (r(i+l) , (LLTP(i+dI(ri , WTF1rJ, 

p(i+l) = (LLT)bl r(i+l) + b<Pi y 

i = 0, I, 2,.... 

(94 

W) 

(9c) 

(94 

(94 

The success of the method will depend on how good an approximate inverse 
(LLT)-l is. Physical intuition and experience tell us that for the diffusion equation 
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(and most other P.D.E.‘s) M-l (the Green’s function) couples a given zone most 
strongly to its nearest neighbors and therefore neglecting the coupling to more 
distant neighbors should be a good approximation. Thus for matrices arising from 
P.D.E.‘s we expect the ICCG method and its generalizations to work quite well. For 
arbitrary matrices, however, the neglect of coupling to distant neighbors is probably 
disastrous. As is shown in Sections 2 and 3, it is quite good for the problems we have 
studied. 

2. NUMERICAL RESULTS 

LASNEX [2], the Livermore laser fusion code, is a two-dimensional Lagrangian 
hydrodynamic code with diffusive radiation transport. For problems of interest (dt) 
(the smallest practical time step) is often lo3 to IO* times larger than T (the charac- 
teristic relaxation time for an initial perturbation in radiation energy) so fully implicit 
differencing is an absolute necessity. The equation being solved is of the form 

if/at = WDWfi rue -f> 

(transport term) (electron-radiation coupling term) 

where D, y, andf’ are given nonnegative functionsof space and time. This is differenced 
in the form 

k = I, 2,..., K and I = 1, 2,..., L, N = KL, 

where 

This may be rewritten in matrix form as 

w -YY, (m+l) - (10) 
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where 

M=A-R-S, 

and 

(Af )k’?) = ((lldt) + yhs.L).fg+l) = O,,lf pi+? 

Y = (1/W>)fY,L + Yk,lfE.L . 

The matrix is clearly symmetric and D > 0 in the original partial differential equation, 
implies that 01~:,[ and /J,:,! > 0. It is easy to show that this implies that M is positive 
definite. 

Users of the code contributed typical problems on which they were currently 
working. For each problem, a time was chosen about halfway through the run, when 
all physics was in full swing, and M, f*, and y (see Eq. (10)) were written from the 
radiation subroutine to a disc file. In addition, to facilitate future comparisons, a 
model problem was studied. Various iterative schemes were then used to calculate 
f tnL+l) using f m as an initial guess. For each scheme the work, or number of multiplica- 
tions and divisions per iteration is given. The work is further broken down into 
recursive work where the calculation of the ith element depends on the previous 
calculation of the (i - 1)st element or the (i - K)th element, and vector work where 
all N elements may be simultaneously calculated. For our problems the diffusion 
coefficient (and hence 01 and 6) are arbitrary positive functions of position and often 
change by large amounts from one zone to the next. Therefore, R and S are strongly 
noncommutative and for both point SOR and AD1 schemes there is no theoretical 
basis for choosing relaxation parameters to accelerate convergence. Therefore no 
acceleration parameters have been used for SOR and ADI. 

(1) Point Gauss-Seidel or point successive overrelaxation with overrelaxation 
parameter w = 1, hereafter referred to as GS. Work is 2N vector and 3N recursive. 
Storage (besides the storage for M, f (+I) and y) is 0. 

(2) Alternating direction implicit defined by 

where f irn+l) is the ith iteration approximation to f cm+l), referred to as ADI 1. Work is 
8N vector and 4N recursive. Storage is 3N. 

(3) A more implicit version of AD1 defined by 

(A - R 1 S )f;;$, 1 2 = &fj”‘+‘) + Y, 

(A - S + R2)f t?;? = R,f t!!%, + Y, 

referred to as ADI 2. Work is 6N vector and 4N recursive. Storage is 3N. 
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(4) Optimized block successive overrelaxation where the overrrelaxation 
parameter is given by 

wb = [I + (1 2 p”(J)])‘l” ’ 

where p(J) is the spectral radius of the associated block Jacobi matrix, J. In what 
follows, p(J) was computed to high accuracy by the power method [8] and the optimum 
wb was put in for all iterations. Thus, our curves for this method (BSOR) may converge 
faster than practical BSOR where one iterates toward the correct wb as one iterates 
toward the solution vector. Work is 2N vector and 4N recursive. Storage is 2N. 

(5) The incomplete Cholesky-conjugate gradient method referred to as ICCG. 
Storage is 4N. 

The ICCG method will give different results depending on whether the matrix is set 
up with bandwidth K or L. Numerically it has been found to be quite advantageous 
to choose the bandwidth to always be the smaller of K and L. This choice minimizes 
the number of entries which would be nonzero in the exact decomposition but are 
set to zero in the incomplete decomposition. By using the LDLT decomposition 
and choosing D so that the diagonal elements of L are all ones, we can eliminate N 
divisions per iteration and the work for TCCG(0) is 11N vector and 4N recursive. 

The recursive work for the ICCG(0) method is the same as for BSOR or AD1 and 
only the vector work is greater. Thus on vector (parallel processing) machines or by 
the use of Stacklib [9] on the CDC 7600, the vector operations are so much faster 
than the recursive ones that all methods take roughly the same CPU time per iteration. 
Storage is slightly greater for ICCG(0). 

The exact (to 14 significant decimal digits) solution, fcm+l), was computed for all 
problems using double precision complete Cholesky decomposition and all iterative 
solutions were compared to this exact answer. 

Three problems were chosen for presentation as representative. The diffusion 
equation was differenced on a mesh which was highly irregular in both shape and 
size in all three problems. The boundary of the region was also very irregular in all 
three problems. All problems had mixed Neumann 

n.Vf =O, 

and Dirchlet, 

f =o, boundary conditions. 

All problems had regions which were well heated and regions which were quite cold. 
Problem 1 was the most difficult of the three. It had 555 zones (dimension of 

fcnz+l) = 555). The 01 and /3 coefficients (off diagonal elements) of the matrix varied 
by 10z7 over all the zones, while the u coefficients (see Eq. (10)) varied by 1011 over 
all zones. There were regions of the problem where 

OL and fl were <lO-lOa 
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so there was no transport and for these (k, I) the matrix was pure diagonal to ten-place 
accuracy. There were regions of the problem where 

(Y and B were > 10% 

and so for these (k, I) the matrix was pure Laplacian (Mii = -&;i) Mjj) to six-place 
accuracy. The largest and smallest eigenvalues of M were found by the power series 
method to be 

h max = 8.276 x lOa, 

h min = 4.156 X lo-‘, 

so the condition of the matrix was 

Xmax/hmin = 2 X IO”. 

The numerical results are shown in Fig. 1. The curve for ADI 1 is not shown in 
Fig. 1 because although AD1 1 was very slowly asymptotically convergent [[q+r)/~ = 
0.998321 for this problem, on the first iteration E increased to 2.177 x IO4 and it 
took thousands of iterations to get E back down onto the graph (C = 0.1). It is 
interesting to note that for this ill-conditioned problem, BSOR has a serious drawback. 
The overrelaxation parameter was optimized to give BSOR the best asymptotic rate 
of convergence and indeed, the asymptotic rate has been much improved over BSOR 
with no overrelaxation (which looks much like AD1 2). At the same time, however, 
optimized overrelaxation has made the initial convergence much worse so that for 

-5 -. 

0 200 400 600 
B ITERATIONS 

FIG. 1. Convergence curves for problem 1. B = 11 xm - x6 1//11 x8 11, where I( x II is the Euclidian 
norm, x8 is the exact solution vector, and xm is the mth iteration approximation to x, . 
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the first 130 iterations, the answer is worse than 
iterations to achieve 

E = 10-6, E = l/f-fexact I1 
lI.fexact II ’ 

GRADIENT METHOD 53 

the initial guess. The number of 

/I x 11 = (zx;)1/2 

was, 
ICCG- 25, 
BSOR - 765, 
AD1 2 - 4750, 
AD1 1 - 10,200, 

GS - 208,000. 

Problem 2 was an “easy” problem. Variations in the coefficients were less severe 
with 10 > 01 and /3 > lo- 16, 10 > G > 10-6, over the whole problem. There were 
regions where 

01 and b < u, 

and so for these (k, l) the matrix was pure diagonal and there were regions where iy. 
and /3 were about as large as (T, but there was no region where 01 and /3 > a and so the 
matrix was nowhere pure Laplacian. 

For this problem 

h max = 1.867 x 103, 
h min = 2.47, 

condition = hmax/&in = 765. 

-1. I I I 

0 20 40 60 

Y ITERATIONS 

FIG. 2. Convergence curves for problem 2. 
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There were 1111 zones in the problem. The results are shown in Fig. 2. For this 
easier problem, the gap between the various methods narrowed but ICCG was still 
quite a bit faster. The number of iterations to achieve E = IO-s was 

ICCG- 7, 
BSOR - 25, 
AD1 2- 22, 
AD1 l-110, 

GS - 214. 

Problem 3 was intermediate in difficulty. The dimension of the linear system was 595. 
The variation in coefficients was 

10-G > 01 and /3 > 10-12, 
10-4 > u > 10-11. 

There were pure diagonal regions where 

o1 and /3 < 1O-3u 

and pure Laplacian regions where 

u < 10-4 (a or Is). 

For this problem A,,, = 3.475 x 10-4, Amin = 8.785 x 1O-s, condition = 3.96 x 104. 
The results are shown in Fig. 3. 

ICCG 

-10 o I I I 
100 200 300 

# ITERATIONS 

FIG. 3. Convergence curves for problem 3. 
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The number of iterations to achieve E = lO-‘j was 

ICCG - 15, 
BSOR- 201, 
AD1 2 - 2817, 
AD1 1 - 10861, 

GS - 10076. 

Since the exact matrix equations and initial guesses for the real physical problems 1 
through 3 could not be given (it would take 3000 numbers to specify completely just 
the smallest of the three problems), we invented a model problem (problem #4) which 
is easy to specify exactly and which contains all the essential features of problems 1,2, 
and 3, which made them so difficult. Thus the interested reader can make direct 
comparisons with our results. 

A picture of the problem is shown in Fig. 9. For this problem K = L = 50. 
A corner has been cut out of the problem so that there are 1875 zones in the problem. 
Each zone has a pli,l value associated with it (k = l,..., K, I = I,..., L) and the value 
of prcPl for each zone is given in Fig. 9. Jn the notation of Eq. (10) the problem is 
specified by 

At = 1 

Yk.1 = 0 for all k and I, 

%.z = 2GL + PGtl)P, 

except on boundaries. All quantities are zone centered. 
Along the k = 1 boundary marked N for Neumann boundary condition we have 

afiari = 0, or aosl = 0. Similarly, along the k = 50, I = I,..., 25 boundary LX~~,& = 0. 
Along the 1 = 1 boundary, filc,0 = 0, and along the I = 50, k = I,..., 25 boundary 
P - 0. k.50 - 

Along the k = 25, 1 = 26,..., 50 boundary marked D for Dirchlet boundary 
condition, we have f m+l = 0 outside the problem and we choose 

%5,2 = p25.Z 3 

Similarly along the I = 25, k = 26,..., 50 boundary 

Pk.25 = Pk.25 3 

f . (m+1) = () 
k-26 
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This specifies all boundary conditions. For fnL, the temperature at the end of the last 
time step we take 

.f;wz = 1()wc+49h4.51, 

and for our initial guess forfnl+l we guess it is zero everywhere. Thiscompletely specifies 
the model problem. 

Our model problem has all the essential features of the real problems. It has mixed 
boundary conditions, regions where 

and regions where 

and (Y and fl change by large factors between adjacent zones thus making R and S 
strongly noncommutative. 

The largest and smallest eigenvalues of the matrix were 

h max = 7.855 x 106, 

giving a condition number of 7.855 x 106. The results are shown in Fig. 10. The 
number of iterations to achieve E = 1O-6 was 

ICCG 29, 
BSOR - 283, 
ADI 2 - 9910, 
AD1 1 - 255,000, 

GS- 20,000. 

Note that the curve for ADI 1 in Fig. 10 turns and goes very flat between the 500th 
and the 1000th iteration. 

Figures 4, 5, and 6, compare l nOrm , the norm of the error vector divided by the 
norm of the solution, with Emax, the maximum over all zones of the percentage 
error in ftnz+l) in a given zone. For all methods except BSOR emax follows Enorm fairly 
closely. For BSOR, however, during the first 50 iterations emax is rising while enOrm is 
falling and on the 37th iteration, it reaches a maximum value of 2.18 x 104. Thus, 
with BSOR enOrrn is claiming a 17 ‘A error level while in certain zones ftmfl) is 2 x 1 O4 
times too large. This high noise level persists so that, e.g., on the 300th iteration 
Enorm is 3.47 x lo-’ while emaX = 3.05 x 1O-2. For many physical applications 
emax is required to be small and so the required number of iterations may be greatly 
increased. 

The conjugate gradient (CG) method (Eqs. (3)) was also tried by itself. On problem 
1, the method showed no appreciable convergence in the first 1000 iterations with 
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I _ 
30 

ii ITERATIONS 

;. 4. Comparison of ~~~~ and cDnorm for problem 3, ICCG, where +,rm = /I .? - Y]jJj 2 !I, 
= Maxi / xim - xi6 //I xi6 /, where xi is the ith component of the vector x. 

# ITERATIONS 

FIG. 5. Same for BSOR. 
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-41 
0 200 400 600 800 

# ITERATIONS 

FIG. 6. Same for AD1 2. 

both l nOrm and EmaX staying equal to their initial values. On problem 2, the CG method 
converged, but even slower than GS. On problem 3, E nOrm converged slowly (at about 
the same rate as GS) but meanwhile, emaX increased to IO6 and stayed large for 750 
iterations after which it finally started to decrease. Thus, conjugate gradient without 
incomplete Cholesky was a disaster on problems 1 and 3 and was the slowest of all 
methods on problem 2. 

The lCCG(3) method of Meijerink and van der Vorst [I] was also tried on our three 
problems. On all three problems it cut the number of iterations to achieve six-place 
accuracy in half but it increased the recursive work per iteration from 4N to 10N 
(vector work remains the same) and it took 3N more storage. Thus the gain in con- 
vergence rate was more than offset (on vector-oriented machines) by the loss in work 
per iteration and increased storage requirements. 

3 

Why is the new method so successful ? Since conjugate gradient by itself does so 
badly on our test problems, we must analyze the effect of the imcomplete Cholesky 
decomposition. Even for a model problem such as 

vyb = 0, 

differenced on a regular square grid, it is extremeIy difficult to analytically compute 
the eigenvalues of L-l AI(L and to see how close it is to the identity [lo]. Instead, 
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FIG. 7. The 695 eigenvalues of M for problem 3 arranged in order of decreasing magnitude. 

it proved more profitable to use numerical methods for the determination of the 
eigenvalues. This was done for problem 3. All the 695 eigenvalues of M were calculated 
using BANDRD and TQLl [l l] and the results are plotted in Fig. 7. The largest and 
smallest eigenvalues of the original matrix M for this problem were 

and 
A,,, = 3.4751 x 10-s 

h min = 8.7845 x 1O-s 

so the condition = X,,/X,i, = 3.956 x log. The eigenvalues of M were all distinct 
and were spread evenly between X,, and Xmin. The largest 40 and smallest 40 
eigenvalues of L-l M(LT)-l were calculated using the Lanczos method and checked 
with the power method [8]. Note that the ICCG(0) method is a Lanczos method and 
the coefficients aj and bi generated by Eqs. (9) are simply related to the tridiagonal 
matrix elements generated in the Lanczos method [12]. These are plotted in Fig. 8 
and the largest 20 and smallest 20 are given in Table I. It is clear from Fig. 8 that 
L--l M(LT)-’ is a very good approximate identity. Out of 695 eigenvalues, 640 of them 
lie between 1.15 and 0.85. This accounts for the great rapidity of convergence of the 
new method. An examination of Table I also shows why incomplete Cholesky de- 
composition followed by a linear iterative scheme such as H. L. Stone’s scheme with 
cx = 0 [lo] will not work nearly as well as ICCG. In this method, one writes 

M = LL“ + E 

where E is the error matrix. Then 
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FIG. 8. Largest and smallest 40 eigenvalues of L-‘M(Lr)-’ for problem 3, arranged in order of 
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FIG. 9. The model problem with p values for each zone and boundary conditions (N or D). 

can be rewritten as 

L-1 M(LT)-1 (LTX) = [I + L-l E(LT)-‘3 (LTX) == L-‘y, 

which leads to the iterative scheme 
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TABLE I 

The Largest and Smallest 20 Eigenvalues of L-‘M(L7)-’ for Problem 3 

1 1.3928 0.00466 

2 1.3672 0.26209 

3 1.3408 0.34010 

4 1.3241 0.44114 

5 1.3006 0.49221 

6 1.2870 0.54889 

7 1.2653 0.55108 

8 I .2626 0.57347 

9 1.2499 0.60203 

10 1.2493 0.62470 

11 1.2456 0.65454 

12 1.2324 0.68270 

13 1.2280 0.69131 

14 1.2199 0.73451 

15 1.2135 0.7378 1 

16 1.2046 0.74406 

17 1.1992 0.77077 

18 1.1933 0.77163 

19 1.1891 0.78438 

20 1.1860 0.78767 
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Therefore, the asymptotic rate of convergence is given by 

p = “ty I 1 - A; I, 

where hi are the eigenvalues of L-lM(Lr)-l. For problem 3 

SO 

h min = 4.6646 X 10~~ 
h max = 1.3928, 

p = 0.99534, 

which means about 2900 iterations are required to reduce the worst eigenvector by a 
factor of 106. By contrast, the conjugate gradient method first reduces the components 
of the residual, y - A4xi along the eigenvectors with the most extreme eigenvalue to 
very small values. This is just why the Lanczos method is able to get good approxima- 
tions to the extreme eigenvalues and their eigenvectors after only a few iterations. 
The residual then lies almost entirely in the subspace of the eigenvectors with less 
extreme eigenvalues and the iteration then proceeds as if the most extreme eigenvectors 
and eigenvalues were not present [12]. Thus, although the condition of L-lM(LT)-l is 

hmax/Xmin = 298.59, 

which is not very much better than the condition of M, conjugate gradient immediately 
eliminates the eigenvector with the smallest eigenvalue and since the next smallest 
eigenvalue is 

Xmin = 0.26209 

the effective condition number after the first few iterations is 

hmax/hmin = 5.3 14, 

a very large reduction in condition number. 
Thus, the success of the new method is due to two factors. 

(1) Incomplete Cholesky decomposition modifies the original system of linear 
equations to a new system whose matrix is very close to the identity matrix except 
for a few extreme eigenvalues. 

(2) The conjugate gradient method applied to this modified system of linear 
equations quickly eliminates the few extreme eigenvalues and eigenvectors and ends 
up solving the linear system in an invariant subspace where the matrix is almost the 
identity matrix. 

CONCLUSION 

The incomplete Cholesky-conjugate gradient method is highly recommended. 
On fairly well-conditioned problems, it was faster than any of the standard methods. 

On very ill-conditioned problems, it was enormously faster than any of the standard 
methods. 
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Most of the algorithm is trivially vectorizable leading to great savings on the coming 
generation of parallel processing (vector) machines. 

The algorithm has a much wider range of applicability than most of the standard 
iterative methods. 

APPENDIX ~GENERALIZATIONOFTHE ICCG METHODTOARBITRARYNONSINGULAR 
SPARSE MATRICES ARISING FROM PARTIAL DIFFERENTIAL EQUATIONS 

Consider a matrix equation, 

Ax =y 

where A is any nonsingular sparse matrix. Since A need not be symmetric or positive 
definite we shall do an incomplete LU decomposition. As before we choose a set of 
entries P and as we proceed through the standard LU algorithm [6] (without pivoting) 
we force all the entries in P to be zero in L and U. We use the form of the algorithm 
in which all diagonal elements of L are 1. The Uii can now be positive or negative 
but if Uii = 0 the algorithm breaks down. In this case, as before, we simply set Uii 
to a nonzero value and go on with the algorithm thus introducing one nonzero entry 
on the diagonal of the error matrix E = A - LU. Often partial differential equations 
give rise to diagonally dominant matrices in which case exact LU decomposition 
(without pivoting) gives all good pivots and probably for this case incomplete LU 
decomposition will only rarely give Uii = 0. 

Thus we obtain an approximate inverse (LU)-l for A and we rewrite the original 
equation as 

L-l AU-l (Ux) = L-ly. (8’) 

We use a modified form of the conjugate gradient method which applies to any 
nonsingular matrix M. Equation (1) is modified to read 

and (Y~ is chosen to minimize /I x, - x I/. 
Note that because we are expanding in powers of (MrM) instead of powers of M 

we are now able to minimize x, - ,Y in the Euclidean norm. This is different from 
the standard method of Hestenes and Stiefel [3] for arbitrary nonsingular matrices 
which minimizes 11 Mx, - y I/. This requires less work per iteration and should give 
faster convergence than the standard algorithm. It is well known (see, [4, Sect. 4.31) 
that for the positive definite symmetric case minimizing in the (z, Muz) norm 
works best when p is as small as possible. 

581/26/I-j 
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Equations (3) now become 

r, = y - Mx, and p. = MTro 

4 = (ri , riMPi , PA 

xi+l = Xi + @Pi 3 

ri+l = ri - ai Mpi , 

bi = (ri+lT ri+Mi , ri), 

PW = MTri+l + bipi , 

i = 0, 1) 2 ,.... 

(3’4 

(W 

(3’c) 

(3’d) 

Vd 

Combining Eqs. (3’) and Eq. (8’) (i.e., M = L-l,4 U-l) after some algebra we obtain 
the algorithm 

r, = y - Ax, and p. = (VU)-l AT(LLT)-l r. 

ui = (ri , W3-l r3 
(Pi 3 UTUPi) ’ (9’4 

Xi+1 = Xi + aipi 9 P’b) 
ri+l = ri - atAp, , (9’c) 

bi = ki+l ) cLLTjel h+d 
(rt , (LLT)-l ri) ’ (9’4 

Pi+1 = ( UTU)-l AT(LLT)-l ri+l + bipi , 

i = 0, 1, 2 ,.... 
(9’4 

How good is this approximate LU factorization? It has been tried on mirror 
machine 20 phase-space diffusion problems (in LLL’s magnetic confinement fusion 
program) where the analytic operator and its finite difference analog were neither 
symmetric nor positive definite. The results were very encouraging with the code 
being speeded up by a factor of 10 on stiff problems [13]. This algorithm was also 
tried on the problems presented in this paper and it required 1.5 to 2.5 times as many 
interations to converge to six-place accuracy as did the ICCG algorithm (Eqs. (9)) 
and about 50 % more work per iteration. Thus the generalized conjugate gradient 
method was only 1.5 to 2.5 times slower than standard conjugate gradient (for positive 
definite symmetric matrices) on our problems. 

So in the applications tried so far the approximate LU factorization combined with 
generalized conjugate gradient method seems to work quite well. 
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